The bounded linear operators on the space of rd o 空间上的有界线性算子
Best approaching of bounded linear operator in reproducing kernel space 再生核空间的有界线性算子的最佳逼近
Bounded linear operator 有界线性算子
Let h be an infinite dimensional complex hilbert space , b ( h ] the banach algebra of all bounded linear operators on h , and s ( h ) the space of all symmetric operators on h . let l be a real linear , weakly continuous rank one preserver of s ( h ) 设h是无限维复的hilbert空间, b ( h )为h上的有界线性算子全体组成的banach代数, s ( h )为h上的对称算子全体
We study the spectral theory of bounded linear operators and the characterization of ci operators by way of mbekhta ' s subspaces . we find a series of operators which are ci operators by the defination and the characterization of ci operators given by weibang gong in [ 3 ] 利用mbekhta子空间研究一般有界线性算子的谱理论以及描述ci算子的特征;用ci算子的定义和判定方法寻找更广泛的ci算子;同时还讨论了广义逆算子和ci算子及mbekhta子空间的关系。